Mathematics: MCM 109

Final Exam

Date: 18 - 1 - 2012Duration Time: 1 Hour

Academic Year: 2011 – 2012

Semester: Autumn

Examiner: Dr. Mohamed Eid

Faculty of Pharmacy

Answer All Questions

[1](a) Find y` where:

(i)
$$y = 2x^4 + 4^x + 3$$

(ii) $y = \sin x + \ln x + \log x$ (iii) $y = x^3 \cdot \cos x$

(iii)
$$y = x^3 .\cos x$$

(b) Find the integrals: (i)
$$\int (x^3 - 3^x + 2) dx$$

8

4

4

4

6

Marks

(i)
$$\int (x^3 - 3^x + 2) dx$$
 (ii) $\int (3x^2 + 2x + 1) dx$
(iii) $\int (\frac{1}{x} + \frac{1}{x^2} + \cos x) dx$ (iv) $\int \frac{x+3}{x^2 + 3x + 2} dx$

(iv)
$$\int \frac{x+3}{x^2+3x+2} dx$$

[2](a)If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \\ 1 & 2 & -2 \end{bmatrix}$. Find, if possible, $A + B$, $A \cdot B$, $A^t \cdot B$

(b)If
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ 0 & 2 \\ -2 & 1 \end{bmatrix}$. Find, if possible, $A + B$, $A + B^t$, $A \cdot B$

(c)Solve the system of equations:

$$x + y - z = 3$$
, $x - y + z = 3$, $2x - y + 2z = 9$

[3](a) Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}$ 5

(b) A drug in the blood decreases according to equation $\sqrt{y_0} - \sqrt{y} = 10t$.

4

If the initial quantity $y_0 = 400$ units. Find

- (i) The time at which 25 % of drug exists in the blood.
- (ii) The time at which 50 % of drug exists in the blood.
- (iii) The time.0 at which there is no drug in the blood.
- (iv)The quantity of drug in the blood after 1 hour.

Good luck

Dr. Mohamed Eid

(1) Find the following limits:

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 2}$$

(b)
$$\lim_{x \to 1} \frac{x^5 - 1}{x^2 - 1}$$

(c)
$$\lim_{x \to 0} \frac{\log(1+3x)}{x}$$

(d)
$$\lim_{x \to 0} \frac{\sin x}{2^x - 1}$$

(2) Find y` where:

(a)
$$y = 2x^3 + 4^x$$

$$(b) y = x^2 \cos x + 3^x$$

(c)
$$y = 8 + \tan x \cdot \log x$$

$$(d) y = \frac{x^2}{\sin x}$$

Answer

[1]Find y` where: (a) $y = x^3 \sin x$

$$(b) y = 4^X + \log x$$

الاسم:
(b)
$$y = 4^x + \log x$$
 (c) $y = 8 + x^{-3} + \tan x$

- [2] Find the maximum, minimum and inflection points of the function: $f(x) = x^3 - 12x^2 + 3$
- [3] Find the integrals: (a) $\int (x^2+3\cos x) dx$

(b)
$$\int (3^x + \frac{1}{x} + \frac{1}{x^3}) dx$$

(c)
$$\int (\frac{2x}{x^2 + 3} + \sin x) dx$$
 (d) $\int \frac{x - 3}{x^2 - 3x + 2} dx$

(d)
$$\int \frac{x-3}{x^2-3x+2} dx$$

Answer

Academic Year: 2011 – 2012

Semester: Autumn

Date: 5 - 12 - 2011

Time: 1 Hour

Mathematics: MCM 109

Mid-Term Exam

Examiner: Dr. Mohamed Eid

Answer all questions

[1] Find y` where: (a)
$$y = 3x^4 + 4^x + \frac{1}{x^2}$$

$$y = 3x^{4} + 4^{x} + \frac{1}{x^{2}}$$
 (b) $y = \cos x \cdot \ln x$

(c)
$$y = 3 + \log(x + \sin x)$$

(d)
$$y = [x^2 + \cos x]^4$$

[2] Find the integrals: (a)
$$\int (4^x + \cos x) dx$$

(c)
$$\int (3 + \frac{2x+3}{x^2 + 3x}) dx$$
 (d) $\int_{1}^{2} (1+x^2)^2 dx$

(d)
$$\int_{1}^{2} (1+x^2)^2 dx$$

[3] Find the maximum, minimum and inflection points of the function:

$$f(x) = x^3 - 6x^2 + 3$$

[4]A drug in the blood decreases according to the equation $\sqrt{y_0} - \sqrt{y} = 6t$.

If the initial quantity 225 units.

Find (i) The time at which 40 % of drug exists in the blood.

(ii) The time at which 60 % of drug exists in the blood.

(iii) The time at which there is no drug in the blood.

(iv)The quantity in the blood after 1 hour.

(time by hours)

Good luck

Dr. Mohamed Eid